M-Hazy Module and Its Homomorphism Theorem

نویسندگان

چکیده

Based on a completely distributive lattice M , we propose new fuzzification approach to module, which leads the concept of an id="M2"> -hazy module. Different from traditional that defines fuzzy algebra as subset classical algebra, introduce id="M3"> module by fuzzifications algebraic operations. Then, investigate fundamental properties id="M4"> modules and id="M5"> submodules. In particular, present id="M6"> homomorphism theorem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The M-Homomorphism and M-Anti Homomorphism of an M-Fuzzy Subgroup and Its Level M-Subgroups

In this paper, we introduce the concept of an M-fuzzy subgroup of an M-group and discussed some of its properties.

متن کامل

A Study on Intuitionistic Fuzzy and Normal Fuzzy M-Subgroup, M-Homomorphism and ‎Isomorphism‎

In this paper, we introduce some properties of an intuitionistic normal fuzzy m-subgroup of m- group with m-homomorphism and isomorphism. We study he image, the pre-image and the inverse mapping of the intuitionistic normal fuzzy m-‎subgroups.‎

متن کامل

A generalization of Martindale's theorem to $(alpha, beta)-$homomorphism

Martindale proved that under some conditions every multiplicative isomorphism between two rings is additive. In this paper, we extend this theorem to a larger class of mappings and conclude that every multiplicative $(alpha, beta)-$derivation is additive.

متن کامل

A homomorphism theorem for bilinear multipliers

In this paper we prove an abstract homomorphism theorem for bilinear multipliers in the setting of locally compact Abelian (LCA) groups. We also provide some applications. In particular, we obtain a bilinear abstract version of K. de Leeuw’s theorem for bilinear multipliers of strong and weak type. We also obtain necessary conditions on bilinear multipliers on non-compact LCA groups, yielding b...

متن کامل

A Dichotomy Theorem for Homomorphism Polynomials

In the present paper we show a dichotomy theorem for the complexity of polynomial evaluation. We associate to each graph H a polynomial that encodes all graphs of a fixed size homomorphic to H . We show that this family is computable by arithmetic circuits in constant depth if H has a loop or no edge and that it is hard otherwise (i.e., complete for VNP, the arithmetic class related to #P ). We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics

سال: 2023

ISSN: ['2314-4785', '2314-4629']

DOI: https://doi.org/10.1155/2023/3581113